2109:-
Uppskattad leveranstid 10-16 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Andra format:
- Inbunden 2109:-
This book lays out the theory of MordellWeil lattices, a very powerful and influential tool at the crossroads of algebraic geometry and number theory, which offers many fruitful connections to other areas of mathematics. The book presents all the ingredients entering into the theory of MordellWeil lattices in detail, notably, relevant portions of lattice theory, elliptic curves, and algebraic surfaces. After defining MordellWeil lattices, the authors provide several applications in depth. They start with the classification of rational elliptic surfaces. Then a useful connection with Galois representations is discussed. By developing the notion of excellent families, the authors are able to design many Galois representations with given Galois groups such as the Weyl groups of E6, E7 and E8. They also explain a connection to the classical topic of the 27 lines on a cubic surface.Two chapters deal withelliptic K3 surfaces, a pulsating area of recent research activity which highlights many central properties of MordellWeil lattices. Finally, the book turns to the rank problemone of the key motivations for the introduction of MordellWeil lattices. The authors present the state of the art of the rank problem for elliptic curves both over Q and over C(t) and work out applications to the sphere packing problem. Throughout, the book includes many instructive examples illustrating the theory.
- Format: Pocket/Paperback
- ISBN: 9789813293038
- Språk: Engelska
- Antal sidor: 431
- Utgivningsdatum: 2020-10-29
- Förlag: Springer Verlag, Singapore