bokomslag Multimodal Optimization by Means of Evolutionary Algorithms
Data & IT

Multimodal Optimization by Means of Evolutionary Algorithms

Mike Preuss

Inbunden

1519:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 189 sidor
  • 2015
This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization. The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used. The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.
  • Författare: Mike Preuss
  • Illustratör: Bibliographie
  • Format: Inbunden
  • ISBN: 9783319074061
  • Språk: Engelska
  • Antal sidor: 189
  • Utgivningsdatum: 2015-12-04
  • Förlag: Springer International Publishing AG