bokomslag Natural Language Annotation For Machine Learning
Data & IT

Natural Language Annotation For Machine Learning

James Pustejovsky Amber Stubbs

Pocket

429:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 342 sidor
  • 2012

Create your own natural language training corpus for machine learning. Whether youre working with English, Chinese, or any other natural language, this hands-on book guides you through a proven annotation development cycle-the process of adding metadata to your training corpus to help ML algorithms work more efficiently. You dont need any programming or linguistics experience to get started.

Using detailed examples at every step, youll learn how the MATTER Annotation Development Process helps you Model, Annotate, Train, Test, Evaluate, and Revise your training corpus. You also get a complete walkthrough of a real-world annotation project.

  • Define a clear annotation goal before collecting your dataset (corpus)
  • Learn tools for analyzing the linguistic content of your corpus
  • Build a model and specification for your annotation project
  • Examine the different annotation formats, from basic XML to the Linguistic Annotation Framework
  • Create a gold standard corpus that can be used to train and test ML algorithms
  • Select the ML algorithms that will process your annotated data
  • Evaluate the test results and revise your annotation task
  • Learn how to use lightweight software for annotating texts and adjudicating the annotations

This book is a perfect companion to OReillys Natural Language Processing with Python.

  • Författare: James Pustejovsky, Amber Stubbs
  • Format: Pocket/Paperback
  • ISBN: 9781449306663
  • Språk: Engelska
  • Antal sidor: 342
  • Utgivningsdatum: 2012-11-08
  • Förlag: O'REILLY & ASSOCIATES