bokomslag New Developments in Unsupervised Outlier Detection
Data & IT

New Developments in Unsupervised Outlier Detection

Xiaochun Wang Xiali Wang Mitch Wilkes

Inbunden

2549:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 277 sidor
  • 2020
This book enriches unsupervised outlier detection research by proposing several new distance-based and density-based outlier scores in a k-nearest neighbors setting. The respective chapters highlight the latest developments in k-nearest neighbor-based outlier detection research and cover such topics as our present understanding of unsupervised outlier detection in general; distance-based and density-based outlier detection in particular; and the applications of the latest findings to boundary point detection and novel object detection. The book also offers a new perspective on bridging the gap between k-nearest neighbor-based outlier detection and clustering-based outlier detection, laying the groundwork for future advances in unsupervised outlier detection research. The authors hope the algorithms and applications proposed here will serve as valuable resources for outlier detection researchers for years to come.
  • Författare: Xiaochun Wang, Xiali Wang, Mitch Wilkes
  • Format: Inbunden
  • ISBN: 9789811595189
  • Språk: Engelska
  • Antal sidor: 277
  • Utgivningsdatum: 2020-11-25
  • Förlag: Springer Verlag, Singapore