bokomslag Newton's Method: an Updated Approach of Kantorovich's Theory
Vetenskap & teknik

Newton's Method: an Updated Approach of Kantorovich's Theory

Jose Antonio Ezquerro Fernandez Miguel Angel Hernandez Veron

Pocket

869:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 166 sidor
  • 2017
This book shows the importance of studying semilocal convergence in iterative methods through Newton's method and addresses the most important aspects of the Kantorovich's theory including implicated studies. Kantorovich's theory for Newton's method used techniques of functional analysis to prove the semilocal convergence of the method by means of the well-known majorant principle. To gain a deeper understanding of these techniques the authors return to the beginning and present a deep-detailed approach of Kantorovich's theory for Newton's method, where they include old results, for a historical perspective and for comparisons with new results, refine old results, and prove their most relevant results, where alternative approaches leading to new sufficient semilocal convergence criteria for Newton's method are given. The book contains many numerical examples involving nonlinear integral equations, two boundary value problems and systems of nonlinear equations related to numerous physical phenomena. The book is addressed to researchers in computational sciences, in general, and in approximation of solutions of nonlinear problems, in particular.
  • Författare: Jose Antonio Ezquerro Fernandez, Miguel Angel Hernandez Veron
  • Illustratör: Bibliographie 13 farbige Abbildungen
  • Format: Pocket/Paperback
  • ISBN: 9783319559759
  • Språk: Engelska
  • Antal sidor: 166
  • Utgivningsdatum: 2017-07-14
  • Förlag: Birkhauser Verlag AG