bokomslag Nilspace Factors for General Uniformity Seminorms, Cubic Exchangeability and Limits
Vetenskap & teknik

Nilspace Factors for General Uniformity Seminorms, Cubic Exchangeability and Limits

Pablo Candela Balazs Szegedy

Pocket

1489:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 101 sidor
  • 2023
We study a class of measure-theoretic objects that we call cubic couplings, on which there is a common generalization of the Gowers norms and the Host Kra seminorms. Our main result yields a complete structural description of cubic couplings, using nilspaces. We give three applications. Firstly, we describe the characteristic factors of HostKra type seminorms for measure-preserving actions of countable nilpotent groups. This yields an extension of the structure theorem of Host and Kra. Secondly, we characterize sequences of random variables with a property that we call cubic exchangeability. These are sequences indexed by the infinite discrete cube, such that for every integer k 0 the joint distribution's marginals on affine subcubes of dimension k are all equal. In particular, our result gives a description, in terms of compact nilspaces, of a related exchangeability property considered by Austin, inspired by a problem of Aldous. Finally, using nilspaces we obtain limit objects for sequences of functions on compact abelian groups (more generally on compact nilspaces) such that the densities of certain patterns in these functions converge. The paper thus proposes a measure-theoretic framework on which the area of higher-order Fourier analysis can be based, and which yields new applications of this area in a unified way in ergodic theory and arithmetic combinatorics.
  • Författare: Pablo Candela, Balazs Szegedy
  • Format: Pocket/Paperback
  • ISBN: 9781470465483
  • Språk: Engelska
  • Antal sidor: 101
  • Utgivningsdatum: 2023-07-31
  • Förlag: American Mathematical Society