bokomslag Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms
Vetenskap & teknik

Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms

Michel Courtieu Alexei A Panchishkin

Pocket

529:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 204 sidor
  • 2003
This book, now in its 2nd edition, is devoted to the arithmetical theory of Siegel modular forms and their L-functions. The central object are L-functions of classical Siegel modular forms whose special values are studied using the Rankin-Selberg method and the action of certain differential operators on modular forms which have nice arithmetical properties. A new method of p-adic interpolation of these critical values is presented. An important class of p-adic L-functions treated in the present book are p-adic L-functions of Siegel modular forms having logarithmic growth. The given construction of these p-adic L-functions uses precise algebraic properties of the arithmetical Shimura differential operator. The book will be very useful for postgraduate students and for non-experts looking for a quick approach to a rapidly developing domain of algebraic number theory. This new edition is substantially revised to account for the new explanations that have emerged in the past 10 years of the main formulas for special L-values in terms of arithmetical theory of nearly holomorphic modular forms.
  • Författare: Michel Courtieu, Alexei A Panchishkin
  • Format: Pocket/Paperback
  • ISBN: 9783540407294
  • Språk: Engelska
  • Antal sidor: 204
  • Utgivningsdatum: 2003-12-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K