bokomslag Non-Asymptotic Analysis of Approximations for Multivariate Statistics
Data & IT

Non-Asymptotic Analysis of Approximations for Multivariate Statistics

Yasunori Fujikoshi Vladimir V Ulyanov

Pocket

909:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 130 sidor
  • 2020
This book presents recent non-asymptotic results for approximations in multivariate statistical analysis. The book is unique in its focus on results with the correct error structure for all the parameters involved. Firstly, it discusses the computable error bounds on correlation coefficients, MANOVA tests and discriminant functions studied in recent papers. It then introduces new areas of research in high-dimensional approximations for bootstrap procedures, CornishFisher expansions, power-divergence statistics and approximations of statistics based on observations with random sample size. Lastly, it proposes a general approach for the construction of non-asymptotic bounds, providing relevant examples for several complicated statistics. It is a valuable resource for researchers with a basic understanding of multivariate statistics.
  • Författare: Yasunori Fujikoshi, Vladimir V Ulyanov
  • Illustratör: Bibliographie
  • Format: Pocket/Paperback
  • ISBN: 9789811326158
  • Språk: Engelska
  • Antal sidor: 130
  • Utgivningsdatum: 2020-06-28
  • Förlag: Springer Verlag, Singapore