Vetenskap & teknik
Pocket
Operator Algebras for Multivariable Dynamics
Kenneth R Davidson • Elias G Katsoulis
1149:-
Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.
Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\sigma_i:X \to X$ for $1 \le i \le n$. To this the authors associate two conjugacy operator algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\mathcal{A}(X,\tau)$ and the semicrossed product $\mathrm{C}_0(X)\times_\tau\mathbb{F}_n^+$. They develop the necessary dilation theory for both models. In particular, they exhibit an explicit family of boundary representations which determine the C*-envelope of the tensor algebra.|Let $X$ be a locally compact Hausdorff space with $n$ proper continuous self maps $\sigma_i:X \to X$ for $1 \le i \le n$. To this the authors associate two conjugacy operator algebras which emerge as the natural candidates for the universal algebra of the system, the tensor algebra $\mathcal{A}(X,\tau)$ and the semicrossed product $\mathrm{C}_0(X)\times_\tau\mathbb{F}_n^+$. They develop the necessary dilation theory for both models. In particular, they exhibit an explicit family of boundary representations which determine the C*-envelope of the tensor algebra.
- Format: Pocket/Paperback
- ISBN: 9780821853023
- Språk: Engelska
- Antal sidor: 53
- Utgivningsdatum: 2011-02-28
- Förlag: American Mathematical Society