679:-
Uppskattad leveranstid 7-12 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Partial differential equations related to extremal problems for quasiconformal mappings.- Singularly perturbed initial value problems.- Existence and bounds for the lowest critical energy of the hartree operator.- Positive invariance and a Wazewski Theorem.- An application of the hausdorff-young inequality to eigenfunction expansions.- On central dispersions of the differential equation Y?=q(t)Y with periodic coefficients.- Generalized translation operators associated with a singular differential operator.- Multi-parameter problems.- Monotonicity with discontinuities in partial differential equations.- On a deficiency index theorem of W. N. Everitt.- The essential self-adjointness of Schrdinger operators.- Nonlinear elliptic equations.- A differential inequality with applications to subharmonic functions.- Inequalities associated with certain partial differential operators.- The expansion theorem in multi-parameter sturm-liouville theory.- On the differential equation cr (pD1+qD2)ru=0.- Fundamental solutions for degenerate parabolic equations.- Singular perturbations of a vector boundary value problem.- Asymptotic integration of linear systems.- Nonlinear perturbations of linear elliptic operators.- Limit point-limit circle criteria for (py?)?+qy=?ky.- On second-order differential operators of limit-circle type.- A dynamical approach to fourth order oscillations.- Over-determined systems and the rectilinear steady flow of simple fluids.- A necessary and sufficient limit-circle criterion for left-definite eigenvalue problems.- Generalized weyl circles.- Existence and multiplicity of solutions of some nonlinear equations.- The floquet problem for almost periodic linear differential equations.- Global estimates for nonlinear reaction and diffusion.- Perturbation theory for Sobolew spaces.- Perturbations of self-adjoint operators in L2 (G) with applications to differential operators.- Square integrable solutions of Lp perturbations of second order linear differential equations.- Deficiency indices of polynomials in symmetric differential expressions.- Transform theorems for two-parameter eigenvalue problems in hilbert space.- Bivariational bounds on ??,g?, when A?=f.- On the limit point and strong limit point classification of 2nth order differential expressions with wildly oscillating coefficients.- Determination of Weyl's m-coefficient for a continuous spectrum.- The matrix functional-differential equation y?(x)=Ay(?x)+By(x).- A tetrad approach for a system of PDE's.- Quasi-analytic solutions of differential equations.- Integral inequalities and the Liouville transformation.- Hopf bifurcation with an infinite limiting period.- N-Soliton solutions of some non-linear dispersive wave equations of physical significance.- Continuity of generalized solutions of the cauchy problem for the porous medium equation.- Two timing for abstract differential equations.- Counterexamples in the spectral theory of singular Sturm Liouville operators.- Perturbation of a singular boundary value problem arising from torsional vibration of an inhomogeneous cylinder.- Some function theoretical aspects in the theory of partial differential equations.- A multi-parameter sturm-liouville problem.- Periodic solutions of holomorphic differential equations.- Volterra equations on a hilbert space.- How to get numerical convergence out of instable algorithms.- On the existence of an interface in nonlinear diffusion processes.- Hlder continuous nonlinear product integrals.- Continuous spectra and linear operator equations.- Asymptotic linearity and a class of noninear Sturm-Liouville problems on the half line.- An elementary calculus for Green's functions associated with singular boundary value problems.- Gewhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in Banachren.- On the integral equation method for boundary-value problems.
- Format: Pocket/Paperback
- ISBN: 9783540069591
- Språk: Engelska
- Antal sidor: 452
- Utgivningsdatum: 1974-11-01
- Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K