bokomslag Parameter Estimation in Fractional Diffusion Models
Vetenskap & teknik

Parameter Estimation in Fractional Diffusion Models

Kstutis Kubilius Yuliya Mishura Kostiantyn Ralchenko

Pocket

1799:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 390 sidor
  • 2019
This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is white, i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides simple and suitable parameter estimation methods in these models, making it a valuable resource for all researchers in this field. The book is addressed to specialists and researchers in the theory and statistics of stochastic processes, practitioners who apply statistical methods of parameter estimation, graduate and post-graduate students who study mathematical modeling and statistics.
  • Författare: Kstutis Kubilius, Yuliya Mishura, Kostiantyn Ralchenko
  • Format: Pocket/Paperback
  • ISBN: 9783319890319
  • Språk: Engelska
  • Antal sidor: 390
  • Utgivningsdatum: 2019-06-06
  • Förlag: Springer International Publishing AG