bokomslag Parameterized Algorithms
Data & IT

Parameterized Algorithms

Marek Cygan Fedor V Fomin Ukasz Kowalik Daniel Lokshtanov Dniel Marx

Inbunden

1059:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 1-3 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 613 sidor
  • 2015
This comprehensive textbook presents a clean and coherent account of most fundamental tools and techniques in Parameterized Algorithms and is a self-contained guide to the area. The book covers many of the recent developments of the field, including application of important separators, branching based on linear programming, Cut & Count to obtain faster algorithms on tree decompositions, algorithms based on representative families of matroids, and use of the Strong Exponential Time Hypothesis. A number of older results are revisited and explained in a modern and didactic way. The book provides a toolbox of algorithmic techniques. Part I is an overview of basic techniques, each chapter discussing a certain algorithmic paradigm. The material covered in this part can be used for an introductory course on fixed-parameter tractability. Part II discusses more advanced and specialized algorithmic ideas, bringing the reader to the cutting edge of current research. Part III presentscomplexity results and lower bounds, giving negative evidence by way of W[1]-hardness, the Exponential Time Hypothesis, and kernelization lower bounds. All the results and concepts are introduced at a level accessible to graduate students and advanced undergraduate students. Every chapter is accompanied by exercises, many with hints, while the bibliographic notes point to original publications and related work.
  • Författare: Marek Cygan, Fedor V Fomin, Ukasz Kowalik, Daniel Lokshtanov, Dniel Marx
  • Illustratör: Bibliographie 24 farbige Abbildungen
  • Format: Inbunden
  • ISBN: 9783319212746
  • Språk: Engelska
  • Antal sidor: 613
  • Utgivningsdatum: 2015-08-03
  • Förlag: Springer International Publishing AG