bokomslag Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem
Vetenskap & teknik

Perihelia Reduction and Global Kolmogorov Tori in the Planetary Problem

Gabriella Pinzari

Pocket

1319:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 92 sidor
  • 2018
The author proves the existence of an almost full measure set of $(3n-2)$-dimensional quasi-periodic motions in the planetary problem with $(1+n)$ masses, with eccentricities arbitrarily close to the Levi-Civita limiting value and relatively high inclinations. This extends previous results, where smallness of eccentricities and inclinations was assumed. The question had been previously considered by V. I. Arnold in the 1960s, for the particular case of the planar three-body problem, where, due to the limited number of degrees of freedom, it was enough to use the invariance of the system by the SO(3) group. The proof exploits nice parity properties of a new set of coordinates for the planetary problem, which reduces completely the number of degrees of freedom for the system (in particular, its degeneracy due to rotations) and, moreover, is well fitted to its reflection invariance. It allows the explicit construction of an associated close to be integrable system, replacing Birkhoff normal form, a common tool of previous literature.
  • Författare: Gabriella Pinzari
  • Format: Pocket/Paperback
  • ISBN: 9781470441029
  • Språk: Engelska
  • Antal sidor: 92
  • Utgivningsdatum: 2018-10-30
  • Förlag: American Mathematical Society