bokomslag Predictive Maintenance in Dynamic Systems
Data & IT

Predictive Maintenance in Dynamic Systems

Edwin Lughofer Moamar Sayed-Mouchaweh

Inbunden

2369:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 567 sidor
  • 2019
This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet ofThings. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.
  • Författare: Edwin Lughofer, Moamar Sayed-Mouchaweh
  • Illustratör: 50 farbige Tabellen 56 schwarz-weiße und 143 farbige Abbildungen Bibliographie
  • Format: Inbunden
  • ISBN: 9783030056445
  • Språk: Engelska
  • Antal sidor: 567
  • Utgivningsdatum: 2019-03-12
  • Förlag: Springer Nature Switzerland AG