Ny
bokomslag Privacy-Preserving Techniques with e-Healthcare Applications
Data & IT

Privacy-Preserving Techniques with e-Healthcare Applications

Dan Zhu Dengguo Feng Xuemin Shen

Inbunden

1999:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 174 sidor
  • 2024
This book investigates novel accurate and efficient privacy-preserving techniques and their applications in e-Healthcare services. The authors first provide an overview and a general architecture of e-Healthcare and delve into discussions on various applications within the e-Healthcare domain. Simultaneously, they analyze the privacy challenges in e-Healthcare services. Then, in Chapter 2, the authors give a comprehensive review of privacy-preserving and machine learning techniques applied in their proposed solutions. Specifically, Chapter 3 presents an efficient and privacy-preserving similar patient query scheme over high-dimensional and non-aligned genomic data; Chapter 4 and Chapter 5 respectively propose an accurate and privacy-preserving similar image retrieval scheme and medical pre-diagnosis scheme over dimension-related medical images and single-label medical records; Chapter 6 presents an efficient and privacy-preserving multi-disease simultaneous diagnosis scheme over medical records with multiple labels. Finally, the authors conclude the monograph and discuss future research directions of privacy-preserving e-Healthcare services in Chapter 7.
  • Författare: Dan Zhu, Dengguo Feng, Xuemin Shen
  • Format: Inbunden
  • ISBN: 9783031769214
  • Språk: Engelska
  • Antal sidor: 174
  • Utgivningsdatum: 2024-12-14
  • Förlag: Springer International Publishing AG