bokomslag Probability Measures on Groups VIII
Vetenskap & teknik

Probability Measures on Groups VIII

Herbert Heyer

Pocket

529:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 388 sidor
  • 1986
On the assumptions of a central limit theorem for approximate martingale arrays on a group.- Idempotent measures on commutative hypergroups.- Les variables aleatoires de loi stable et leur representation selon P. Levy.- Parabolic subgroups and factor compactness of measures on semisimple lie groups.- Une caracterisation du type de la loi de Cauchy-Heisenberg.- Levy-Schoenberg kernels on riemannian symmetric spaces of noncompact type.- Exemples d'hypergroupes transients.- Quelques proprietes du noyau potentiel d'une marche aleatoire sur les hypergroupes de type Kunze-Stein.- Sobolev inequalities and random walks.- Uniform distribution in solvable groups.- Absolute continuity and singularity of distributions of dependent observations: Gaussian and exchangeable measures.- Ergodic and mixing properties of measures on locally compact groups.- On jumps of paths of Markov processes.- Recurrent random walks on homogeneous spaces.- A central limit theorem for coalgebras.- Haar measures in a representation and a decomposition problem.- Compactness, medians and moments.- Non-commutative algebraic central limit theorems.- A description of the martin boundary for nearest neighbour random walks on free products.- On hyperbolic hypergroups.- Theoremes de la limite centrale pour les produits de matrices en dependance Markovienne. Resultats recents.- Entropie, theoremes limite et marches aleatoires.- Random walks on graphs.- Stable probability measures on groups and on vector spaces.- Towards a duality theory for algebras.- Random fields on noncommutative locally compact groups.

  • Författare: Herbert Heyer
  • Format: Pocket/Paperback
  • ISBN: 9783540168065
  • Språk: Engelska
  • Antal sidor: 388
  • Utgivningsdatum: 1986-10-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K