bokomslag Procedural Content Generation via Machine Learning
Data & IT

Procedural Content Generation via Machine Learning

Matthew Guzdial Sam Snodgrass Adam J Summerville

Inbunden

1029:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 238 sidor
  • 2022
This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). Machine learning is having a major impact on many industries, including the video game industry. PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML. This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry. The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project.
  • Författare: Matthew Guzdial, Sam Snodgrass, Adam J Summerville
  • Format: Inbunden
  • ISBN: 9783031167188
  • Språk: Engelska
  • Antal sidor: 238
  • Utgivningsdatum: 2022-12-07
  • Förlag: Springer International Publishing AG