Projective Measure Without Projective Baire
Häftad, Engelska, 2021
1 279 kr
Beställningsvara. Skickas inom 5-8 vardagar
Fri frakt för medlemmar vid köp för minst 249 kr.The authors prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a $\Delta^1_3$ set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal.
Produktinformation
- Utgivningsdatum2021-03-30
- Vikt298 g
- SpråkEngelska
- SerieMemoirs of the American Mathematical Society
- Antal sidor267
- FörlagAmerican Mathematical Society
- EAN9781470442965