Vetenskap & teknik
Pocket
Projective Measure Without Projective Baire
Sy David Friedman • David Schrittesser
1299:-
Uppskattad leveranstid 5-10 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
The authors prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a $\Delta^1_3$ set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal.
- Format: Pocket/Paperback
- ISBN: 9781470442965
- Språk: Engelska
- Antal sidor: 267
- Utgivningsdatum: 2021-03-30
- Förlag: American Mathematical Society