bokomslag Quadratic Vector Equations on Complex Upper Half-Plane
Vetenskap & teknik

Quadratic Vector Equations on Complex Upper Half-Plane

Oskari Ajanki Laszlo Erdos Torben Kruger

Pocket

1379:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 132 sidor
  • 2019
The authors consider the nonlinear equation $-\frac 1m=z+Sm$ with a parameter $z$ in the complex upper half plane $\mathbb H $, where $S$ is a positivity preserving symmetric linear operator acting on bounded functions. The solution with values in $ \mathbb H$ is unique and its $z$-dependence is conveniently described as the Stieltjes transforms of a family of measures $v$ on $\mathbb R$. In a previous paper the authors qualitatively identified the possible singular behaviors of $v$: under suitable conditions on $S$ we showed that in the density of $v$ only algebraic singularities of degree two or three may occur. In this paper the authors give a comprehensive analysis of these singularities with uniform quantitative controls. They also find a universal shape describing the transition regime between the square root and cubic root singularities. Finally, motivated by random matrix applications in the authors' companion paper they present a complete stability analysis of the equation for any $z\in \mathbb H$, including the vicinity of the singularities.
  • Författare: Oskari Ajanki, Laszlo Erdos, Torben Kruger
  • Format: Pocket/Paperback
  • ISBN: 9781470436834
  • Språk: Engelska
  • Antal sidor: 132
  • Utgivningsdatum: 2019-12-30
  • Förlag: American Mathematical Society