bokomslag Quasi-projective Moduli for Polarized Manifolds
Vetenskap & teknik

Quasi-projective Moduli for Polarized Manifolds

Eckart Viehweg

Pocket

1949:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 320 sidor
  • 2011
The concept of moduli goes back to B. Riemann, who shows in [68] that the isomorphism class of a Riemann surface of genus 9 ~ 2 depends on 3g - 3 parameters, which he proposes to name "moduli". A precise formulation of global moduli problems in algebraic geometry, the definition of moduli schemes or of algebraic moduli spaces for curves and for certain higher dimensional manifolds have only been given recently (A. Grothendieck, D. Mumford, see [59]), as well as solutions in some cases. It is the aim of this monograph to present methods which allow over a field of characteristic zero to construct certain moduli schemes together with an ample sheaf. Our main source of inspiration is D. Mumford's "Geometric In variant Theory". We will recall the necessary tools from his book [59] and prove the "Hilbert-Mumford Criterion" and some modified version for the stability of points under group actions. As in [78], a careful study of positivity proper ties of direct image sheaves allows to use this criterion to construct moduli as quasi-projective schemes for canonically polarized manifolds and for polarized manifolds with a semi-ample canonical sheaf.
  • Författare: Eckart Viehweg
  • Format: Pocket/Paperback
  • ISBN: 9783642797477
  • Språk: Engelska
  • Antal sidor: 320
  • Utgivningsdatum: 2011-12-27
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K