bokomslag Radial Basis Function (RBF) Neural Network Control for Mechanical Systems
Data & IT

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems

Jinkun Liu

Pocket

2219:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 365 sidor
  • 2015
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics.
  • Författare: Jinkun Liu
  • Format: Pocket/Paperback
  • ISBN: 9783642434556
  • Språk: Engelska
  • Antal sidor: 365
  • Utgivningsdatum: 2015-06-26
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K