bokomslag Random Matrix Methods for Machine Learning
Data & IT

Random Matrix Methods for Machine Learning

Romain Couillet

Inbunden

1099:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 408 sidor
  • 2022
This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website.
  • Författare: Romain Couillet
  • Illustratör: Worked examples or Exercises
  • Format: Inbunden
  • ISBN: 9781009123235
  • Språk: Engelska
  • Antal sidor: 408
  • Utgivningsdatum: 2022-07-21
  • Förlag: Cambridge University Press