Data & IT
Pocket
Reconfigurable Cellular Neural Networks and Their Applications
Mtak E Yaln • Tuba Ayhan • Ramazan Yenieri
759:-
Uppskattad leveranstid 7-12 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
This book explores how neural networks can be designed to analyze sensory data in a way that mimics natural systems. It introduces readers to the cellular neural network (CNN) and formulates it to match the behavior of the WilsonCowan model. In turn, two properties that are vital in nature are added to the CNN to help it more accurately deliver mimetic behavior: randomness of connection, and the presence of different dynamics (excitatory and inhibitory) within the same network. It uses an ID matrix to determine the location of excitatory and inhibitory neurons, and to reconfigure the network to optimize its topology. The book demonstrates that reconfiguring a single-layer CNN is an easier and more flexible solution than the procedure required in a multilayer CNN, in which excitatory and inhibitory neurons are separate, and that the key CNN criteria of a spatially invariant template and local coupling are fulfilled. In closing, the application of the authors neuron population model as a feature extractor is exemplified using odor and electroencephalogram classification.
- Illustratör: Bibliographie 29 schwarz-weiße und 18 farbige Abbildungen
- Format: Pocket/Paperback
- ISBN: 9783030178390
- Språk: Engelska
- Antal sidor: 74
- Utgivningsdatum: 2019-04-26
- Förlag: Springer Nature Switzerland AG