bokomslag Representations of SU(2,1) in Fourier Term Modules
Vetenskap & teknik

Representations of SU(2,1) in Fourier Term Modules

Roelof W Bruggeman Roberto J Miatello

Pocket

839:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 210 sidor
  • 2023
This book studies the modules arising in Fourier expansions of automorphic forms, namely Fourier term modules on SU(2,1), the smallest rank one Lie group with a non-abelian unipotent subgroup. It considers the abelian Fourier term modules connected to characters of the maximal unipotent subgroups of SU(2,1), and also the non-abelian modules, described via theta functions. A complete description of the submodule structure of all Fourier term modules is given, with a discussion of the consequences for Fourier expansions of automorphic forms, automorphic forms with exponential growth included. These results can be applied to prove a completeness result for Poincar series in spaces of square integrable automorphic forms. Aimed at researchers and graduate students interested in automorphic forms, harmonic analysis on Lie groups, and number-theoretic topics related to Poincar series, the book will also serve as a basic reference on spectral expansion with Fourier-Jacobi coefficients. Only a background in Lie groups and their representations is assumed.
  • Författare: Roelof W Bruggeman, Roberto J Miatello
  • Format: Pocket/Paperback
  • ISBN: 9783031431913
  • Språk: Engelska
  • Antal sidor: 210
  • Utgivningsdatum: 2023-11-07
  • Förlag: Springer International Publishing AG