bokomslag Robust Subspace Estimation Using Low-Rank Optimization
Data & IT

Robust Subspace Estimation Using Low-Rank Optimization

Omar Oreifej Mubarak Shah

Pocket

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 114 sidor
  • 2016
Various fundamental applications in computer vision and machine learning require finding the basis of a certain subspace. Examples of such applications include face detection, motion estimation, and activity recognition. An increasing interest has been recently placed on this area as a result of significant advances in the mathematics of matrix rank optimization. Interestingly, robust subspace estimation can be posed as a low-rank optimization problem, which can be solved efficiently using techniques such as the method of Augmented Lagrange Multiplier. In this book, the authors discuss fundamental formulations and extensions for low-rank optimization-based subspace estimation and representation. By minimizing the rank of the matrix containing observations drawn from images, the authors demonstrate how to solve four fundamental computer vision problems, including video denosing, background subtraction, motion estimation, and activity recognition.
  • Författare: Omar Oreifej, Mubarak Shah
  • Format: Pocket/Paperback
  • ISBN: 9783319352480
  • Språk: Engelska
  • Antal sidor: 114
  • Utgivningsdatum: 2016-08-23
  • Förlag: Springer International Publishing AG