bokomslag Scalable Signal Processing in Cloud Radio Access Networks
Data & IT

Scalable Signal Processing in Cloud Radio Access Networks

Ying-Jun Angela Zhang Congmin Fan Xiaojun Yuan

Pocket

839:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-15 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 100 sidor
  • 2019
This Springerbreif introduces a threshold-based channel sparsification approach, and then, the sparsity is exploited for scalable channel training. Last but not least, this brief introduces two scalable cooperative signal detection algorithms in C-RANs. The authors wish to spur new research activities in the following important question: how to leverage the revolutionary architecture of C-RAN to attain unprecedented system capacity at an affordable cost and complexity. Cloud radio access network (C-RAN) is a novel mobile network architecture that has a lot of significance in future wireless networks like 5G. the high density of remote radio heads in C-RANs leads to severe scalability issues in terms of computational and implementation complexities. This Springerbrief undertakes a comprehensive study on scalable signal processing for C-RANs, where scalable means that the computational and implementation complexities do not grow rapidly with the network size. This Springerbrief will be target researchers and professionals working in the Cloud Radio Access Network (C-Ran) field, as well as advanced-level students studying electrical engineering.
  • Författare: Ying-Jun Angela Zhang, Congmin Fan, Xiaojun Yuan
  • Illustratör: Bibliographie 20 schwarz-weiße Abbildungen
  • Format: Pocket/Paperback
  • ISBN: 9783030158835
  • Språk: Engelska
  • Antal sidor: 100
  • Utgivningsdatum: 2019-04-27
  • Förlag: Springer Nature Switzerland AG