bokomslag Separability within commutative and solvable associative algebras. Under consideration of non-unitary algebras. With 401 exercises
Vetenskap & teknik

Separability within commutative and solvable associative algebras. Under consideration of non-unitary algebras. With 401 exercises

Sven Bodo Wirsing

Pocket

2609:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 260 sidor
  • 2018
Within the context of the Wedderburn-Malcev theorem a radical complement exists and all complements are conjugated. The main topics of this work are to analyze the Determination of a (all) radical complements, the representation of an element as the sum of a nilpotent and fully separable element and the compatibility of the Wedderburn-Malcev theorem with derived structures. Answers are presented in details for commutative and solvable associative algebras. Within the analysis the set of fully-separable elements and the generalized Jordan decomposition are of special interest. We provide examples based on generalized quaternion algebras, group algebras and algebras of traingular matrices over a field. The results (and also the theorem of Wedderburn-Malcev and Taft) are transferred to non-unitary algebras by using the star-composition and the adjunction of an unit. Within the App endix we present proofs for the Wedderburn-Malcev theorem for unitary algebras, for Taft's theorem on G-invariant radical complements for unitary algebras and for a theorem of Bauer concerning solvable unit groups of associative algebras.
  • Författare: Sven Bodo Wirsing
  • Format: Pocket/Paperback
  • ISBN: 9783960672210
  • Språk: Engelska
  • Antal sidor: 260
  • Utgivningsdatum: 2018-12-03
  • Förlag: Anchor Academic Publishing