bokomslag Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian
Vetenskap & teknik

Spectral Geometry Of The Laplacian: Spectral Analysis And Differential Geometry Of The Laplacian

Hajime Urakawa

Inbunden

2189:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 312 sidor
  • 2017
The totality of the eigenvalues of the Laplacian of a compact Riemannian manifold is called the spectrum. We describe how the spectrum determines a Riemannian manifold. The continuity of the eigenvalue of the Laplacian, Cheeger and Yau's estimate of the first eigenvalue, the Lichnerowicz-Obata's theorem on the first eigenvalue, the Cheng's estimates of the kth eigenvalues, and Payne-Plya-Weinberger's inequality of the Dirichlet eigenvalue of the Laplacian are also described. Then, the theorem of Colin de Verdire, that is, the spectrum determines the totality of all the lengths of closed geodesics is described. We give the V Guillemin and D Kazhdan's theorem which determines the Riemannian manifold of negative curvature.
  • Författare: Hajime Urakawa
  • Format: Inbunden
  • ISBN: 9789813109087
  • Språk: Engelska
  • Antal sidor: 312
  • Utgivningsdatum: 2017-08-02
  • Förlag: World Scientific Publishing Co Pte Ltd