Stability of Line Solitons for the KP-II Equation in R²
Häftad, Engelska, 2015
1 229 kr
Tillfälligt slut
The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as $x\to\infty$. He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the local phase shift of the crest propagate in a finite speed toward $y=\pm\infty$. The local amplitude and the phase shift of the crest of the line solitons are described by a system of 1D wave equations with diffraction terms.
Produktinformation
- Utgivningsdatum2015-11-01
- Mått178 x 254 x undefined mm
- Vikt280 g
- SpråkEngelska
- SerieMemoirs of the American Mathematical Society
- FörlagAmerican Mathematical Society
- EAN9781470414245