1639:-
Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.
The author proves nonlinear stability of line soliton solutions of the KP-II equation with respect to transverse perturbations that are exponentially localized as $x\to\infty$. He finds that the amplitude of the line soliton converges to that of the line soliton at initial time whereas jumps of the local phase shift of the crest propagate in a finite speed toward $y=\pm\infty$. The local amplitude and the phase shift of the crest of the line solitons are described by a system of 1D wave equations with diffraction terms.
- Format: Pocket/Paperback
- ISBN: 9781470414245
- Språk: Engelska
- Antal sidor: 95
- Utgivningsdatum: 2015-12-30
- Förlag: American Mathematical Society