bokomslag Stability of Spherically Symmetric Wave Maps
Vetenskap & teknik

Stability of Spherically Symmetric Wave Maps

Joachim Krieger

Pocket

1079:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 80 sidor
  • 2006
We study Wave Maps from ${\mathbf{R}}^{2+1}$ to the hyperbolic plane ${\mathbf{H}}^{2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H^{1+\mu}$, $\mu>0$. We show that such Wave Maps don't develop singularities in finite time and stay close to the Wave Map extending the spherically symmetric data(whose existence is ensured by a theorem of Christodoulou-Tahvildar-Zadeh) with respect to all $H^{1+\delta}, \delta\less\mu_{0}$ for suitable $\mu_{0}(\mu)>0$. We obtain a similar result for Wave Maps whose initial data are close to geodesic ones. This strengthens a theorem of Sideris for this context.
  • Författare: Joachim Krieger
  • Format: Pocket/Paperback
  • ISBN: 9780821838778
  • Språk: Engelska
  • Antal sidor: 80
  • Utgivningsdatum: 2006-03-01
  • Förlag: American Mathematical Society