bokomslag Statistical Analysis for High-Dimensional Data
Data & IT

Statistical Analysis for High-Dimensional Data

Arnoldo Frigessi Peter Bhlmann Ingrid Glad Mette Langaas Sylvia Richardson

Pocket

2289:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 306 sidor
  • 2018
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvgar, Lofoten, Norway, in May 2014. The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in big data situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection. Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
  • Författare: Arnoldo Frigessi, Peter Bhlmann, Ingrid Glad, Mette Langaas, Sylvia Richardson
  • Format: Pocket/Paperback
  • ISBN: 9783319800738
  • Språk: Engelska
  • Antal sidor: 306
  • Utgivningsdatum: 2018-03-30
  • Förlag: Springer International Publishing AG