bokomslag Stochastic Optimal Control in Infinite Dimension
Vetenskap & teknik

Stochastic Optimal Control in Infinite Dimension

Giorgio Fabbri Fausto Gozzi Andrzej Swiech

Inbunden

3449:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 916 sidor
  • 2017
Providing an introduction to stochastic optimal control in innite dimension, this book gives a complete account of the theory of second-order HJB equations in innite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in innite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs,and in PDEs in innite dimension. Readers from other elds who want to learn the basic theory will also nd it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in nite dimension, and the basics of stochastic analysis and stochastic equations in innite-dimensional spaces.
  • Författare: Giorgio Fabbri, Fausto Gozzi, Andrzej Swiech
  • Illustratör: Bibliographie
  • Format: Inbunden
  • ISBN: 9783319530666
  • Språk: Engelska
  • Antal sidor: 916
  • Utgivningsdatum: 2017-07-07
  • Förlag: Springer International Publishing AG