bokomslag Symplectic Geometry of Integrable Hamiltonian Systems
Vetenskap & teknik

Symplectic Geometry of Integrable Hamiltonian Systems

Michle Audin Ana Cannas Da Silva Eugene Lerman

Pocket

619:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 226 sidor
  • 2003
Among all the Hamiltonian systems, the integrable ones have special geometric properties; in particular, their solutions are very regular and quasi-periodic. The quasi-periodicity of the solutions of an integrable system is a result of the fact that the system is invariant under a (semi-global) torus action. It is thus natural to investigate the symplectic manifolds that can be endowed with a (global) torus action. This leads to symplectic toric manifolds (Part B of this book). Physics makes a surprising come-back in Part A: to describe Mirror Symmetry, one looks for a special kind of Lagrangian submanifolds and integrable systems, the special Lagrangians. Furthermore, integrable Hamiltonian systems on punctured cotangent bundles are a starting point for the study of contact toric manifolds (Part C of this book).
  • Författare: Michle Audin, Ana Cannas Da Silva, Eugene Lerman
  • Format: Pocket/Paperback
  • ISBN: 9783764321673
  • Språk: Engelska
  • Antal sidor: 226
  • Utgivningsdatum: 2003-04-01
  • Förlag: Birkhauser Verlag AG