bokomslag Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits
Data & IT

Synthesis of Quantum Circuits vs. Synthesis of Classical Reversible Circuits

Alexis De Vos Stijn De Baerdemacker Yvan Van Rentergem

Pocket

909:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 109 sidor
  • 2018
At first sight, quantum computing is completely different from classical computing. Nevertheless, a link is provided by reversible computation. Whereas an arbitrary quantum circuit, acting on ?? qubits, is described by an ?? ?? unitary matrix with ??=2??, a reversible classical circuit, acting on ?? bits, is described by a 2?? 2?? permutation matrix. The permutation matrices are studied in group theory of finite groups (in particular the symmetric group ????); the unitary matrices are discussed in group theory of continuous groups (a.k.a. Lie groups, in particular the unitary group U(??)). Both the synthesis of a reversible logic circuit and the synthesis of a quantum logic circuit take advantage of the decomposition of a matrix: the former of a permutation matrix, the latter of a unitary matrix. In both cases the decomposition is into three matrices. In both cases the decomposition is not unique.
  • Författare: Alexis De Vos, Stijn De Baerdemacker, Yvan Van Rentergem
  • Format: Pocket/Paperback
  • ISBN: 9783031798948
  • Språk: Engelska
  • Antal sidor: 109
  • Utgivningsdatum: 2018-07-03
  • Förlag: Springer International Publishing AG