bokomslag Tame Geometry with Application in Smooth Analysis
Vetenskap & teknik

Tame Geometry with Application in Smooth Analysis

Yosef Yomdin Georges Comte

Pocket

649:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 190 sidor
  • 2004
The Morse-Sard theorem is a rather subtleresult and the interplay between the high-order analytic structure of the mappings involved and their geometry rarely becomes apparent. The main reason is that the classical Morse-Sard theorem is basically qualitative. This volume gives a proofand also an "explanation" of the quantitative Morse-Sard theorem and related results, beginning with the studyof polynomial (or tame) mappings. The quantitative questions, answered by a combination of the methods of real semialgebraic and tame geometry and integral geometry, turn out to be nontrivial and highly productive.The important advantage of this approach is that it allows the separation of the role of high differentiability and that of algebraic geometry in a smooth setting: all the geometrically relevant phenomena appear already for polynomial mappings. The geometric properties obtained are "stable with respect to approximation", and can be imposed on smooth functions via polynomial approximation.
  • Författare: Yosef Yomdin, Georges Comte
  • Format: Pocket/Paperback
  • ISBN: 9783540206125
  • Språk: Engelska
  • Antal sidor: 190
  • Utgivningsdatum: 2004-01-23
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. KG