bokomslag The Calabi Problem for Fano Threefolds
Vetenskap & teknik

The Calabi Problem for Fano Threefolds

Carolina Araujo

Pocket

1569:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 3-8 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 455 sidor
  • 2023
Algebraic varieties are shapes defined by polynomial equations. Smooth Fano threefolds are a fundamental subclass that can be thought of as higher-dimensional generalizations of ordinary spheres. They belong to 105 irreducible deformation families. This book determines whether the general element of each family admits a Khler-Einstein metric (and for many families, for all elements), addressing a question going back to Calabi 70 years ago. The book's solution exploits the relation between these metrics and the algebraic notion of K-stability. Moreover, the book presents many different techniques to prove the existence of a Khler-Einstein metric, containing many additional relevant results such as the classification of all Khler-Einstein smooth Fano threefolds with infinite automorphism groups and computations of delta-invariants of all smooth del Pezzo surfaces. This book will be essential reading for researchers and graduate students working on algebraic geometry and complex geometry.
  • Författare: Carolina Araujo
  • Illustratör: Worked examples or Exercises
  • Format: Pocket/Paperback
  • ISBN: 9781009193399
  • Språk: Engelska
  • Antal sidor: 455
  • Utgivningsdatum: 2023-06-29
  • Förlag: Cambridge University Press