bokomslag The Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations
Vetenskap & teknik

The Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations

Jan Chabrowski

Pocket

379:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 173 sidor
  • 1991
The Dirichlet problem has a very long history in mathematics and its importance in partial differential equations, harmonic analysis, potential theory and the applied sciences is well-known. In the last decade the Dirichlet problem with L2-boundary data has attracted the attention of several mathematicians. The significant features of this recent research are the use of weighted Sobolev spaces, existence results for elliptic equations under very weak regularity assumptions on coefficients, energy estimates involving L2-norm of a boundary data and the construction of a space larger than the usual Sobolev space W1,2 such that every L2-function on the boundary of a given set is the trace of a suitable element of this space. The book gives a concise account of main aspects of these recent developments and is intended for researchers and graduate students. Some basic knowledge of Sobolev spaces and measure theory is required.
  • Författare: Jan Chabrowski
  • Format: Pocket/Paperback
  • ISBN: 9783540544869
  • Språk: Engelska
  • Antal sidor: 173
  • Utgivningsdatum: 1991-09-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K