bokomslag The Fourier Transform for Certain HyperKahler Fourfolds
Vetenskap & teknik

The Fourier Transform for Certain HyperKahler Fourfolds

Mingmin Shen Charles Vial

Pocket

1519:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 161 sidor
  • 2016
Using a codimension-$1$ algebraic cycle obtained from the Poincare line bundle, Beauville defined the Fourier transform on the Chow groups of an abelian variety $A$ and showed that the Fourier transform induces a decomposition of the Chow ring $\mathrm{CH}^*(A)$. By using a codimension-$2$ algebraic cycle representing the Beauville-Bogomolov class, the authors give evidence for the existence of a similar decomposition for the Chow ring of Hyperkahler varieties deformation equivalent to the Hilbert scheme of length-$2$ subschemes on a K3 surface. They indeed establish the existence of such a decomposition for the Hilbert scheme of length-$2$ subschemes on a K3 surface and for the variety of lines on a very general cubic fourfold.
  • Författare: Mingmin Shen, Charles Vial
  • Format: Pocket/Paperback
  • ISBN: 9781470417406
  • Språk: Engelska
  • Antal sidor: 161
  • Utgivningsdatum: 2016-04-30
  • Förlag: American Mathematical Society