Vetenskap & teknik
The Hodge-Laplacian
Dorina Mitrea • Irina Mitrea • Marius Mitrea • Michael Taylor
Inbunden
2909:-
Uppskattad leveranstid 7-12 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
The core of this monograph is the development of tools to derive well-posedness results in very general geometric settings for elliptic differential operators. A new generation of Caldern-Zygmund theory is developed for variable coefficient singular integral operators, which turns out to be particularly versatile in dealing with boundary value problems for the Hodge-Laplacian on uniformly rectifiable subdomains of Riemannian manifolds via boundary layer methods. In addition to absolute and relative boundary conditions for differential forms, this monograph treats the Hodge-Laplacian equipped with classical Dirichlet, Neumann, Transmission, Poincar, and Robin boundary conditions in regular Semmes-Kenig-Toro domains. Lying at the intersection of partial differential equations, harmonic analysis, and differential geometry, this text is suitable for a wide range of PhD students, researchers, and professionals. Contents: Preface Introduction and Statement of Main Results Geometric Concepts and Tools Harmonic Layer Potentials Associated with the Hodge-de Rham Formalism on UR Domains Harmonic Layer Potentials Associated with the Levi-Civita Connection on UR Domains Dirichlet and Neumann Boundary Value Problems for the Hodge-Laplacian on Regular SKT Domains Fatou Theorems and Integral Representations for the Hodge-Laplacian on Regular SKT Domains Solvability of Boundary Problems for the Hodge-Laplacian in the Hodge-de Rham Formalism Additional Results and Applications Further Tools from Differential Geometry, Harmonic Analysis, Geometric Measure Theory, Functional Analysis, Partial Differential Equations, and Clifford Analysis Bibliography Index
- Format: Inbunden
- ISBN: 9783110482669
- Språk: Engelska
- Antal sidor: 528
- Utgivningsdatum: 2016-10-10
- Förlag: De Gruyter