bokomslag The Lin-Ni's Problem for Mean Convex Domains
Vetenskap & teknik

The Lin-Ni's Problem for Mean Convex Domains

Olivier Druet Frederic Robert Juncheng Wei

Pocket

1269:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

Denna produkt går inte att reservera, köp den gärna online!

  • 105 sidor
  • 2012
The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$, $\partial_\nu u=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain of $\mathbb{R}^n$, $n\geq 3$. In particular, they show that concentration can occur only on boundary points with nonpositive mean curvature when $n=3$ or $n\geq 7$. As a direct consequence, they prove the validity of the Lin-Ni's conjecture in dimension $n=3$ and $n\geq 7$ for mean convex domains and with bounded energy. Recent examples by Wang-Wei-Yan show that the bound on the energy is a necessary condition.
  • Författare: Olivier Druet, Frederic Robert, Juncheng Wei
  • Format: Pocket/Paperback
  • ISBN: 9780821869093
  • Språk: Engelska
  • Antal sidor: 105
  • Utgivningsdatum: 2012-06-30
  • Förlag: American Mathematical Society