Vetenskap & teknik
Pocket
The Poset of k-Shapes and Branching Rules for k-Schur Functions
Thomas Lam • Luc Lapointe • Jennifer Morse • Mark Shimozono
1319:-
Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.
The authors give a combinatorial expansion of a Schubert homology class in the affine Grassmannian GrSLk into Schubert homology classes in GrSLk 1. This is achieved by studying the combinatorics of a new class of partitions called k-shapes, which interpolates between k-cores and k 1-cores. The authors define a symmetric function for each k-shape, and show that they expand positively in terms of dual k-Schur functions. They obtain an explicit combinatorial description of the expansion of an ungraded k-Schur function into k 1-Schur functions. As a corollary, they give a formula for the Schur expansion of an ungraded k-Schur function.
- Format: Pocket/Paperback
- ISBN: 9780821872949
- Språk: Engelska
- Antal sidor: 101
- Utgivningsdatum: 2013-07-30
- Förlag: American Mathematical Society