bokomslag The Poset of k-Shapes and Branching Rules for k-Schur Functions
Vetenskap & teknik

The Poset of k-Shapes and Branching Rules for k-Schur Functions

Thomas Lam Luc Lapointe Jennifer Morse Mark Shimozono

Pocket

1319:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 101 sidor
  • 2013
The authors give a combinatorial expansion of a Schubert homology class in the affine Grassmannian GrSLk into Schubert homology classes in GrSLk 1. This is achieved by studying the combinatorics of a new class of partitions called k-shapes, which interpolates between k-cores and k 1-cores. The authors define a symmetric function for each k-shape, and show that they expand positively in terms of dual k-Schur functions. They obtain an explicit combinatorial description of the expansion of an ungraded k-Schur function into k 1-Schur functions. As a corollary, they give a formula for the Schur expansion of an ungraded k-Schur function.
  • Författare: Thomas Lam, Luc Lapointe, Jennifer Morse, Mark Shimozono
  • Format: Pocket/Paperback
  • ISBN: 9780821872949
  • Språk: Engelska
  • Antal sidor: 101
  • Utgivningsdatum: 2013-07-30
  • Förlag: American Mathematical Society