bokomslag The Riesz Transform of Codimension Smaller Than One and the Wolff Energy
Vetenskap & teknik

The Riesz Transform of Codimension Smaller Than One and the Wolff Energy

Benjamin Jaye Fedor Nazarov Maria Carmen Reguera Xavier Tolsa

Pocket

1419:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 97 sidor
  • 2020
Fix $d\geq 2$, and $s\in (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $\mu $ in $\mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(\mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-\Delta )^\alpha /2$, $\alpha \in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.
  • Författare: Benjamin Jaye, Fedor Nazarov, Maria Carmen Reguera, Xavier Tolsa
  • Format: Pocket/Paperback
  • ISBN: 9781470442132
  • Språk: Engelska
  • Antal sidor: 97
  • Utgivningsdatum: 2020-10-30
  • Förlag: American Mathematical Society