bokomslag The Triangle-Free Process and the Ramsey Number $R(3,k)$
Vetenskap & teknik

The Triangle-Free Process and the Ramsey Number $R(3,k)$

Gonzalo Fiz Pontiveros Simon Griffiths Robert Morris

Pocket

1419:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 125 sidor
  • 2020
The areas of Ramsey theory and random graphs have been closely linked ever since Erdos's famous proof in 1947 that the ``diagonal'' Ramsey numbers $R(k)$ grow exponentially in $k$. In the early 1990s, the triangle-free process was introduced as a model which might potentially provide good lower bounds for the ``off-diagonal'' Ramsey numbers $R(3,k)$. In this model, edges of $K_n$ are introduced one-by-one at random and added to the graph if they do not create a triangle; the resulting final (random) graph is denoted $G_n,\triangle $. In 2009, Bohman succeeded in following this process for a positive fraction of its duration, and thus obtained a second proof of Kim's celebrated result that $R(3,k) = \Theta \big ( k^2 / \log k \big )$. In this paper the authors improve the results of both Bohman and Kim and follow the triangle-free process all the way to its asymptotic end.
  • Författare: Gonzalo Fiz Pontiveros, Simon Griffiths, Robert Morris
  • Format: Pocket/Paperback
  • ISBN: 9781470440718
  • Språk: Engelska
  • Antal sidor: 125
  • Utgivningsdatum: 2020-04-30
  • Förlag: American Mathematical Society