1429:-
Uppskattad leveranstid 10-16 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Andra format:
- Inbunden 3809:-
Thermostable Proteins: Structural Stability and Design provides a comprehensive, updated account of the physical basis of enhanced stability of thermophilic proteins and the design of tailor-made thermostable proteins, paving the way for their possible industrial applications. This book is devoted to understanding the survival mechanisms of "thermophilic life forms" at the molecular level with an emphasis on design strategies. The review chapters presented in Thermostable Proteins span a wide range of protein thermostability research. Basic structural, thermodynamic, and kinetic principles are explained and molecular strategies for the adaptation to high temperatures are delineated. In addition, this book covers: Computing and simulation methods in current and future thermostability research, especially in nonempirical situations How rigidity theory is used to improve the thermal adaptation of mesophiles Subtilisin-like serine proteases and their significant engineering applications The state of knowledge concerning structurefunction relations and the origins of their structural stability Computational and experimental approaches for the design of proteins with increased thermal stability based on sequences or three-dimensional structures Understanding the molecular basis of how thermostable and hyperthermostable proteins gain and maintain their stability and biological function at high temperatures remains an important scientific challenge. A more detailed knowledge of protein stability not only deepens our understanding of protein structure but also helps in obtaining insights into processes that drive protein activitiesfolding, unfolding, and misfoldingessential to biological function.
- Illustratör: color 53 Illustrations approx 26 5 Tables, black and white 32 Illustrations black and white
- Format: Pocket/Paperback
- ISBN: 9781138114821
- Språk: Engelska
- Antal sidor: 188
- Utgivningsdatum: 2017-05-22
- Förlag: CRC Press