bokomslag Transformation Groups Poznan 1985
Vetenskap & teknik

Transformation Groups Poznan 1985

Stefan Jackowski Krzysztof Pawalowski

Pocket

529:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 400 sidor
  • 1986
Bounds on the torus rank.- The equivariant wall finiteness obstruction and Whitehead torsion.- Homotopy actions and cohomology of finite groups.- Normally linear Poincaromplexes and equivariant splittings.- Free (?/2)k-actions and a problem in commutative algebra.- Verschlingungszahlen von Fixpunktmengen in Darstellungsformen. II.- An algebraic approach to the generalized Whitehead group.- Almost complex S1-actions on cohomology complex projective spaces.- A product formula for equivariant Whitehead torsion and geometric applications.- Balanced orbits for fibre preserving maps of S1 and S3 actions.- Involutions on 2-handlebodies.- Normal combinatorics of G-actions on manifolds.- Topological invariance of equivariant rational Pontrjagin classes.- On the existence of acyclic ? complexes of the lowest possible dimension.- Unstable homotopy theory of homotopy representations.- Duality in orbit spaces.- Cyclic homology and idempotents in group rings.- ?2 surgery theory and smooth involutions on homotopy complex projective spaces.- Proper subanalytic transformation groups and unique triangulation of the orbit spaces.- A remark on duality and the Segal conjecture.- On the bounded and thin h-cobordism theorem parameterized by ?k.- Algebraic and geometric splittings of the K- and L-groups of polynomial extensions.- Coherence in homotopy group actions.- Existence of compact flat Riemannian manifolds with the first Betti number equal to zero.- Which groups have strange torsion?.

  • Författare: Stefan Jackowski, Krzysztof Pawalowski
  • Format: Pocket/Paperback
  • ISBN: 9783540168249
  • Språk: Engelska
  • Antal sidor: 400
  • Utgivningsdatum: 1986-10-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K