bokomslag Transparent Data Mining for Big and Small Data
Data & IT

Transparent Data Mining for Big and Small Data

Tania Cerquitelli Daniele Quercia Frank Pasquale

Pocket

1889:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 215 sidor
  • 2018
This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches.As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.
  • Författare: Tania Cerquitelli, Daniele Quercia, Frank Pasquale
  • Format: Pocket/Paperback
  • ISBN: 9783319852997
  • Språk: Engelska
  • Antal sidor: 215
  • Utgivningsdatum: 2018-07-28
  • Förlag: Springer International Publishing AG