bokomslag Uncertainty Modeling for Data Mining
Data & IT

Uncertainty Modeling for Data Mining

Zengchang Qin Yongchuan Tang

Inbunden

1479:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 291 sidor
  • 2014
Machine learning and data mining are inseparably connected with uncertainty. The observable data for learning is usually imprecise, incomplete or noisy. Uncertainty Modeling for Data Mining: A Label Semantics Approach introduces 'label semantics', a fuzzy-logic-based theory for modeling uncertainty. Several new data mining algorithms based on label semantics are proposed and tested on real-world datasets. A prototype interpretation of label semantics and new prototype-based data mining algorithms are also discussed. This book offers a valuable resource for postgraduates, researchers and other professionals in the fields of data mining, fuzzy computing and uncertainty reasoning. Zengchang Qin is an associate professor at the School of Automation Science and Electrical Engineering, Beihang University, China; Yongchuan Tang is an associate professor at the College of Computer Science, Zhejiang University, China.
  • Författare: Zengchang Qin, Yongchuan Tang
  • Illustratör: Bibliographie 70 schwarz-weiße Abbildungen
  • Format: Inbunden
  • ISBN: 9783642412509
  • Språk: Engelska
  • Antal sidor: 291
  • Utgivningsdatum: 2014-03-07
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K