bokomslag Unsupervised Pattern Discovery in Automotive Time Series
Data & IT

Unsupervised Pattern Discovery in Automotive Time Series

Fabian Kai Dietrich Noering

Pocket

1309:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 148 sidor
  • 2022
In the last decade unsupervised pattern discovery in time series, i.e. the problem of finding recurrent similar subsequences in long multivariate time series without the need of querying subsequences, has earned more and more attention in research and industry. Pattern discovery was already successfully applied to various areas like seismology, medicine, robotics or music. Until now an application to automotive time series has not been investigated. This dissertation fills this desideratum by studying the special characteristics of vehicle sensor logs and proposing an appropriate approach for pattern discovery. To prove the benefit of pattern discovery methods in automotive applications, the algorithm is applied to construct representative driving cycles.
  • Författare: Fabian Kai Dietrich Noering
  • Format: Pocket/Paperback
  • ISBN: 9783658363352
  • Språk: Engelska
  • Antal sidor: 148
  • Utgivningsdatum: 2022-03-24
  • Förlag: Springer Vieweg