bokomslag Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods
Data & IT

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

Chris Aldrich Lidia Auret

Pocket

1719:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 374 sidor
  • 2016
This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.
  • Författare: Chris Aldrich, Lidia Auret
  • Format: Pocket/Paperback
  • ISBN: 9781447171607
  • Språk: Engelska
  • Antal sidor: 374
  • Utgivningsdatum: 2016-08-23
  • Förlag: Springer London Ltd