1359:-
Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.
Let $F$ be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations $\mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C})$ lift to $\mathrm{GL}_n(\mathbb{C})$. The author takes special interest in the interaction of this result with algebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On the motivic side, the author studies refinements and generalizations of the classical Kuga-Satake construction. Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations; comparison of the automorphic and Galois ``Tannakian formalisms'' monodromy (independence-of-$\ell$) questions for abstract Galois representations.
- Format: Pocket/Paperback
- ISBN: 9781470435400
- Språk: Engelska
- Antal sidor: 156
- Utgivningsdatum: 2019-05-30
- Förlag: American Mathematical Society