bokomslag Variations on a Theorem of Tate
Vetenskap & teknik

Variations on a Theorem of Tate

Stefan Patrikis

Pocket

1359:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 156 sidor
  • 2019
Let $F$ be a number field. These notes explore Galois-theoretic, automorphic, and motivic analogues and refinements of Tate's basic result that continuous projective representations $\mathrm{Gal}(\overline{F}/F) \to \mathrm{PGL}_n(\mathbb{C})$ lift to $\mathrm{GL}_n(\mathbb{C})$. The author takes special interest in the interaction of this result with algebraicity (for automorphic representations) and geometricity (in the sense of Fontaine-Mazur). On the motivic side, the author studies refinements and generalizations of the classical Kuga-Satake construction. Some auxiliary results touch on: possible infinity-types of algebraic automorphic representations; comparison of the automorphic and Galois ``Tannakian formalisms'' monodromy (independence-of-$\ell$) questions for abstract Galois representations.
  • Författare: Stefan Patrikis
  • Format: Pocket/Paperback
  • ISBN: 9781470435400
  • Språk: Engelska
  • Antal sidor: 156
  • Utgivningsdatum: 2019-05-30
  • Förlag: American Mathematical Society